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Expected Accuracy Supports

Conditionalization—and

Conglomerability and Reflection
Kenny Easwaran*y
Expected accuracy arguments have been used by several authors ðLeitgeb and Pettigrew
and Greaves and WallaceÞ to support the diachronic principle of conditionalization, in
updates where there are only finitely many possible propositions to learn. I show that
these arguments can be extended to infinite cases, giving an argument not just for
conditionalization but also for principles known as ‘conglomerability’ and ‘reflection’.
This shows that the expected accuracy approach is stronger than has been realized. I also
argue that we should be careful to distinguish diachronic update principles from related
synchronic principles for conditional probability.

1. Introduction. The traditional ‘Dutch book’ and ‘representation theorem’

arguments for probabilism ðthe thesis that a rational agent’s degrees of belief
ought to satisfy the probability axiomsÞ rely on a connection between cre-
dences and practical rationality that some have found problematic.1 Starting
at least with Joyce ð1998Þ, many formal epistemologists have sought to replace
these arguments with more purely epistemic ones that focus on a notion of
‘accuracy’. This is understood as a purely epistemic good, representing some-
thing like the ‘distance’ between one’s credences and the actual truth values
of the propositions one considers. In this article, I will extend some recent

Received April 2012; revised July 2012.
*To contact the author, please write to: University of Southern California, 3709 Trousdale
Parkway, Los Angeles, CA 90089; e-mail: easwaran@usc.edu.
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1. I use the terms “degree of belief” and “credence” interchangeably throughout, de
pending on which seems more stylistically convenient.
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arguments of this sort, to show that accuracy considerations can give stronger
requirements than have been thought. This can be seen as either a strength or a

120 KENNY EASWARAN
weakness for the accuracy-based approach.
Hannes Leitgeb and Richard Pettigrew ð2010a, 2010bÞ use accuracy

conditions to support not only probabilism but also the diachronic norm
of conditionalization ðthat one’s credence in A after learning B is given by
PnewðAÞ5 PoldðA ∧ BÞ=PoldðBÞ, when that is definedÞ, which is characteristic
of Bayesianism. They show that their arguments work if the set of worlds
that are taken to be possibilities by the agent is finite, and ask at the end of
each paper how their arguments fare if the set of worlds is allowed to be
infinite.

I will show that the argument does extend to infinite sets of worlds, if
we make a few natural assumptions about how to understand various con-
cepts that they only explicitly discuss for finite cases. Consideration of the
methodology in infinite settings gives arguments for even more norms be-
yond the ones that Leitgeb and Pettigrew endorse. In particular, it seems
to give arguments for principles like those known as ‘conglomerability’
and ‘reflection’. ðSee sec. 3.2 for precise statements of these principles.Þ
This may be seen as a further strength of the methodology, or ðbecause
of existing arguments against these principlesÞ a reductio of the method-
ology, or a call to further investigate the methodology to find reasons to
accept the arguments of Leitgeb and Pettigrew without accepting these
further conclusions. It is not my goal in this article to decide between these
three responses, but merely to propose them as questions for future research.

My argumentswill be similar to Leitgeb and Pettigrew’s argument for con-
ditionalization ðsec. 6.2 of their second paperÞ rather than to their argument
for probabilism ðsec. 6.1Þ or their more tentative arguments for uniform dis-
tribution ðsec. 6.3Þ and a highly nonstandard alternative to Jeffrey condition-
alization ðsec. 7Þ. This argument is very similar to the one given by Hilary
Greaves and David Wallace ð2006, 608Þ that, “under independently moti-
vated conditions, conditionalization maximizes expected epistemic utility.”
As I set up my framework, I will show how my argument relates to each of
these.

Leitgeb and Pettigrew ð2010a, 209Þ say “there is nothing particularly phil-
osophical about our decision to stick to the case of finitely many worlds in
this article; we simply assume this to be so and postpone the discussion of
the infinite case to another time.” Similarly, Greaves and Wallace ð2006,
611 n. 1Þ state, “We will assume throughout that S ½the set of states� is finite.
This is merely for simplicity of exposition.” ðThey similarly assume that no
nonempty proposition has credence 0.Þ As it turns out, even describing the
argument requires some more substantive assumptions if S can be infinite
rather than if it is finite. However, the appropriately modified arguments do
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work, giving an argument not just for conditionalization but for ðversions
of Þ conglomerability and reflection.

EXPECTED ACCURACY 121
In section 2, I will outline the features used in the infinite version of the
argument. The first four parts discuss the general framework, and the fifth
discusses special issues surrounding the notion of expected value in an infi-
nite setting. The section concludes with precise statements of my three main
theorems: roughly, that a conditional probability function that minimizes ex-
pected inaccuracy satisfies the ratio formula ðwhen that is definedÞ and takes
on a range of values whose expectation is the unconditional probability,
which must therefore lie within the range spanned by the conditional prob-
abilities. ðProofs are given in the appendix.Þ

In section 3, I discuss the interpretation of these theorems. In particular,
I consider their import for both synchronic coherence of an agent’s attitudes
and what I consider more speculative diachronic norms like those suggested
by Leitgeb and Pettigrew, and Greaves andWallace. I end with a brief conclu-
sion and an appendix containing proofs of the theorems.

2. Assumptions of the Setting.

2.1. Propositions, Probability, and Measurability. For the purposes of
this discussion, I treat the objects of doxastic attitudes as propositions and think
of propositions as sets of possibilities.2 Each proposition is identified with a
subset of the set S of possibilities for the agent.

I will also assume that the synchronic norms of probabilism have already
been established, perhaps by means of the argument that Leitgeb and Petti-
grew use, or perhaps independently. Thus, I will assume that the agent’s cre-
dences satisfy the axioms of probability theory, and, to emphasize this fact, I
will use ‘P’ as the name for the function that represents the credences. To be
explicit, this means:

1. Whenever PðAÞ is defined, PðAÞ ≥ 0.
2. PðSÞ5 1.
3. If A and B are disjoint subsets of S, then, whenever PðAÞ and PðBÞ

are both defined, PðA [ BÞ is defined and equal to PðAÞ1 PðBÞ.

The condition that these credences are defined turns out to be important
for the generalization to the infinite case. It is well-known that in many in-
finite sets, some natural constraints on probabilities are incompatible with

2. I will sometimes refer to these possibilities as ‘states’ or ‘worlds’, but I am not committed

to any particular metaphysical view of what they are, apart from the claim that an agent
considers two propositions compatible if and only if the intersection of the corresponding
sets is nonempty.
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every subset having a probability. Instead, we must assign probabilities only
to some collection M of the ‘measurable’ subsets of the space. In standard
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measure theory, it is assumed that M is a j-field. This means:

1. S is a member of M.
2. If A is in M, then :A ðthe complement of A in SÞ is in M.
3. If A1; A2; : : : are countably many members of M, then their union

[`
i51Ai is in M.

By suitable applications of these assumptions, one can show that count-
able intersections of members of M are in M too.

Thus, I will not assume that the agent has credences in every proposition,
but I will let F be the set of propositions for which she does have cre-
dences, and I will assume that F is a j-field. Of course, if the agent does
have credences in every proposition, then F is trivially a j-field. I suspect
that the closure properties of F can be weakened somewhat, though this
may complicate some of the arguments.

2.2. Updates and Experiments. Not all updates fall in the scope of my
argument. I will only consider updates on whichF remains fixed. Situations
in which the agent comes to have credences in new propositions seem very
different from the standard examples where an agent just learns that some
proposition is true. For instance, two natural cases where F would be ex-
pected to change are the introduction of a new theory, and the discovery
of confusion in one’s old concepts, either one of which might be part of
something like a scientific revolution. Bayesians already know ðEarman
1992Þ that these cases are difficult ones to account for.

I will follow Greaves and Wallace in considering an update situation as
being given in advance by some experiment: “½An experiment is� a situ-
ation in which the agent is to receive some new piece of information,
from among a set of mutually exclusive and jointly exhaustive alterna-
tives. Mathematically, an experiment is represented by a partition E of
S” ðGreaves and Wallace 2006, 611Þ. To say that E is a partition of S just
means that E is a collection of propositions such that each member of S is
in exactly one of the propositions in E. Since their S is finite, so is any ex-
periment E for them. But I will allow E to be infinite.

As a simple example, we can imagine that the agent is about to flip a coin
and observe how it lands. We can think of E as the set fH ; Tg, where H is
the set of all possibilities in which the coin lands “heads,” and T is the set
of all possibilities in which the coin lands “tails.” For a more complicated
example, consider the experiment of consulting an oracle to ask how many
humans will ever have lived. In this case, it seems reasonable that any suf-
ficiently large integer is an epistemically possible outcome, thoughwemight
This content downloaded  on Wed, 30 Jan 2013 13:41:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


imagine that there are other possible outcomes as well, such as one in which
the oracle says, “I don’t know.” The experiment is represented by the set of

EXPECTED ACCURACY 123
distinguishable outcomes for the agent—in this case, rather than one mem-
ber of E being the set of worlds in which there are exactly 10 trillion hu-
mans over the history of the universe, the relevant member of E is the set of
worlds in which the oracle says “10 trillion” in answer to the question. Yet
more complicated examples may arise in cases where the agent is about to
throw an infinitely thin dart at a dart board—if the agent can distinguish
each infinitely small point of the board, then the elements of E will corre-
spond to each possible landing site of the dart, but if the agent cannot distin-
guish these points perfectly, then the elements of E will be much more com-
plicated.

As suggested by my examples, the sort of experiment I consider is one in
which the agent comes to have credence 1 in exactly one member of E and
credence 0 in all the rest. Cases in which the update is generated in some
other way ðe.g., cases driven by conditional probability ½van Fraassen 1981�,
cases involving potential memory loss ½Arntzenius 2003�, and cases calling for
Jeffrey conditionalization—or the alternative to it that Leitgeb and Pettigrew
½2010b, 252–60.� proposeÞ are beyond the scope of the arguments consid-
ered here. However, the notion of conditional probability is traditionally
thought to play an important role in these updates, and if the concept of
conditional probability can be clarified by my arguments, then they will at
least indirectly help us understand these more complicated updates.

I will also assume that E is a subset of F—each distinguishable outcome
of the experiment had some credence for the agent prior to the experiment
being performed. In cases where some elements of E are not inF , the agent
has a possibility of coming to know some proposition that she does not
already grasp—thus, they are outside the scope of my arguments. Updates
involving indexicals like ‘here’ or ‘today’ have this feature, so my argu-
ments do not directly apply to “Sleeping Beauty” or related cases ðMeacham
2008; Titelbaum 2008; Bradley 2012Þ.

2.3. Plans and Availability. I will consider an update as proceeding ac-
cording to a set of “plans” for an experiment.3 For a given experiment E,
and for each proposition A in F , I will represent the agent’s plan for up-
dating her credence in A after performing E as a function fA;E that gives a
real number in each state. For any state s in S, fA;EðsÞ is the credence that
the agent plans to have in A after learning the outcome of E, if s is the

3. The terminology of “plans” seems to suggest a sort of voluntarism about belief that I

do not mean to endorse. I will consider these “plans” as potential dispositions to update
in a particular situation, with the apparatus of decision theory used to evaluate them.
For more discussion of this issue, see Greaves and Wallace ð2006, 612Þ.
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actual state. When E is understood from context, I will sometimes refer to
just f .

124 KENNY EASWARAN
A

This use of “plans” distinguishes my framework slightly from those of
Leitgeb and Pettigrew, and Greaves and Wallace. Leitgeb and Pettigrew
think of an update as given by a single proposition E that the agent be-
comes certain of. In the case where E is finite and all its members have pos-
itive prior credence, it will turn out that the difference is inessential. How-
ever, when some members of E have prior credence 0 ðand in many cases,
such as ones where the experiment consists of learning the precise real
value of some unknown physical parameter, it may be the case that all
members of E have prior credence 0Þ, the partition will play an essential
role in the argument. And once we have a partition rather than a single
proposition, something like this notion of “plan” is essential.

Greaves and Wallace talk of “acts” whereas I talk of “plans.” The main
difference is that while their acts specify a complete probability distribution
for the agent in each state, my plans only specify the agent’s credence for a
single proposition. This primarily helps simplify some of the discussion,
but it is also connected to the distinction between global and local inaccu-
racy measures, to be discussed in section 2.4.4

Of course, given the notion of updates and experiments I am working
with, not just any such function will correspond to a possible plan. Only
a subset of these functions will be said to be “available.” Since the exper-
iment represents the information the agent comes to know during the course
of the update, an agent’s plans must make the same response in states where
the outcome of the experiment is the same.

A plan fA is said to be available ðor “E-available,” if I need to make ex-
plicit which partition is relevantÞ if and only if it meets the following two
conditions:

1. If Ei ∈ E and s1; s2 ∈ Ei, then fAðs1Þ5 fAðs2Þ.
2. If x is any rational number, then Sx ∈ F , where Sx is the set of states

s for which fAðsÞ > x.

A plan that did not satisfy the first constraint would require the agent’s cre-
dence function to depend on information that she does not have, even once
the experiment is performed. The terms s1 and s2 are both compatible with all
the information that she has so far ðwhich is what it means to be in SÞ, and

4. This also leads to a potential worry. An agent may have plans to update her credences

in many propositions, and in some cases these plans may not be coherent—that is, there
may be some state in which following all these plans simultaneously results in credences
that do not satisfy the probability axioms. However, as I mention in sec. 2.6, this can
always be avoided if the agent’s initial credences are countably additive.
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since what she learns on completing E is just which member of E is actual,
she does not learn anything to distinguish them. Thus, she cannot plan to act

EXPECTED ACCURACY 125
differently in those two states.
The second constraint is a bit more subtle. If E is a finite or countable

partition, then it is not a further requirement but in fact follows from the
first one, together with the fact that F is a j-algebra. So it is only a further
assumption if E is uncountably infinite. In planning whether to have cre-
dence greater than x, the agent is responding to whether the actual world
is in Sx or not, and it seems that this responsiveness should require that Sx

be a proposition she can grasp. ðReaders who are familiar with the language
of measure theory will recognize this second constraint as the requirement
that fA be measurable with respect to the agent’s credence function, which is
essential for the notion of expected value to make sense.Þ

2.4. Inaccuracy, Global and Local. The arguments under consideration
are all based on a function I that measures ‘inaccuracy’ of a belief state. The
one I will use is what Leitgeb and Pettigrew call a ‘local inaccuracy mea-
sure’, which is a function such that IðA; s; xÞ is a real number that mea-
sures how epistemically bad it is to have credence x in proposition A in
state s. Greaves and Wallace instead describe their function as an ‘episte-
mic utility function’, but in the terminology of Leitgeb and Pettigrew, it
behaves like a ‘global inaccuracy measure’. This is a function U such that
Uðs; pÞ is a real number that measures how good or bad the overall cre-
dence function p is in state s.

Leitgeb and Pettigrew argue that agents should have both local and global
inaccuracy measures and that these should cohere in a particular way. As a
result, they claim that the local inaccuracy function should be given by the
Brier score, which is defined by IðA; s; xÞ5 ð12 xÞ2 if A is true in s and
IðA; s; xÞ5 x2 if A is false in s. They also argue that the global inaccuracy
function should be given by the sum of the local inaccuracies over all prop-
ositions. Their arguments are interesting, but they rely on some controversial
assumptions about the “geometry of reason” ðLeitgeb and Pettigrew 2010a,
210; see also their theorems 3, 4, and 5 on 222–29Þ. In addition, these argu-
ments cannot work when there are infinitely many propositions to be consid-
ered—their version of global inaccuracywill normally be infinite and thus can-
not relate to local inaccuracy in any interesting way.5

5. As an anonymous referee pointed out, a semiglobal inaccuracy measure summing just
over propositions in a single partition will be finite in this case. However, this involves

choosing a second partition to evaluate, beyond the partition generating the update. The
referee also points out that a more traditional definition of the Brier score, on which it is
averaged over all propositions instead of summed, may be able to give some sort of finite
limit, but this would still require a substantial modification of the argument of Leitgeb
and Pettigrew.
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Greaves and Wallace make no claims about local inaccuracy measures
and very few claims about the global inaccuracy measure that they use.
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This gives them some greater generality but also requires that they consider
an update in terms of “acts” that specify posterior credences for all proposi-
tions, rather than my “plans” that specify posterior credence for only a single
proposition at a time.

I will instead work just with local inaccuracy measures. I will make five
assumptions about the local inaccuracy function IðA; s; xÞ. ðThese assump-
tions are weaker than the ones that Leitgeb and Pettigrew make and have
parallels in other discussions of inaccuracy, such as Joyce 1998.Þ

Extensionality. First, I assume that the inaccuracy of having credence x in
proposition A does not depend on any feature of the state s other than
whether A is true or false. Thus, the function can be thought of as two func-
tions, IðA; 1; xÞ and IðA; 0; xÞ, the former assigning inaccuracies in states
where A is true and the latter in states where A is false. In cases where A
is clear from context, I will suppress the first argument for the function
and just talk about Ið1; xÞ and Ið0; xÞ. ðOne might further assume that
the function is in fact identical for each proposition A, but this is not
needed for my arguments.Þ

Monotonicity. Second, I also assume that for each A, IðA; 0; xÞ has its

only local or global minimum when x5 0, while IðA; 1; xÞ has its only
local or global minimum when x5 1. That is, IðA; 0; xÞ is monotonically
increasing and IðA; 1; xÞ is monotonically decreasing on ½0; 1�. If we con-
sider the possibility of credences outside of ½0; 1�, then both functions
should increase as x moves away from this interval.

Bounded Continuity. Third, I assume that for any positive ε and each A

there is a set of finitely many values 05 x0 < x1 < : : : < xn 5 1 such that,
for every i < n,

IðA; 0; xi11Þ2 IðA; 0; xiÞ < ε

and

IðA; 1; xiÞ2 IðA; 1; xi11Þ < ε:

ðGiven Monotonicity, this is equivalent to the functions being bounded
and continuous on 0 ≤ x ≤ 1.Þ

Convexity. Fourth, for any 0 ≤ x < y ≤ 1 and any 0 < l < 1, I assume that

Ið0; lx 1 ð12 lÞyÞ < l Ið0; xÞ1 ð12 lÞIð0; yÞ, and similarly Ið1; lx1
ð12 lÞyÞ< lIð1; xÞ1 ð12 lÞIð1; yÞ. As illustrated infigure 1, thismeans
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that the inaccuracy of any credence intermediate between x and y is always
less than predicted by linear interpolation between the inaccuracies of x and

Figure 1.
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of y. Thus, not only is inaccuracy increasing as one’s estimate gets farther
from the truth value, but the rate of increase always increases as well.

Immodesty. Finally, I assume that if 0 ≤ c ≤ 1 then the unique value of x

that minimizes cIðA; 1; xÞ1 ð12 cÞIðA; 0; xÞ is x5 c. Once I introduce
the notion of ‘expected inaccuracy’ ðin sec. 2.5Þ, we will see that, for some-
one who has PðAÞ5 c, this is their estimate of the inaccuracy of someone
who has credence x in A. If x5 c were not the unique minimum, then an
agent with credence cwould be ‘modest’, in the sense that she would think
that some other credence was at least as accurate as her own. This condi-
tion is extensively discussed in the literature, sometimes under the name
‘propriety’ ðGreaves and Wallace 2006; Joyce 2009; Myrvold 2012Þ.

These five assumptions are all satisfied by the Brier score, so they follow
from the assumptionsmade by Leitgeb and Pettigrew. They also follow from
Joyce’s assumptions on accuracy and are satisfied by the other scoring rules
discussed on page 275 of Joyce ð2009Þ. Greaves and Wallace assume only
the equivalent of Immodesty for their global inaccuracy measure. But since
this is the most arbitrary-seeming assumption, my argument is no worse off
than theirs.

2.5. Expected Inaccuracy. Before giving the proofs, I need to explain a
bit more about ‘expected inaccuracy’ and showwhy this notionmakes sense.
If V is a random variable ði.e., a function that takes on a real value in each
state s in SÞ, then the ‘expected value of V’, notated as ExpðV Þ, represents
something like the agent’s best estimate of V. It depends on the values for V
in each possible state and the agent’s credence function P. Although ExpðV Þ
may be distinct from every possible value of V ð just as the average family
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may have 2.3 children even though no particular family has exactly that
manyÞ, it traditionally plays a role in guiding one’s actions in light of one’s

128 KENNY EASWARAN
uncertainty about V.
We can stipulate a definition of the expected value of V with respect to

P, as Leitgeb and Pettigrew do. However, they consider at least two dif-
ferent stipulations ðExpðV Þ5os∈SPðsÞV ðsÞ, or ExpðV Þ5ovvPðV 5 vÞÞ,
which give distinct results for some infinite cases, and both seem clearly
wrong for others.6 And there are further worries that arise in taking a sum
of infinitely many terms, especially if the series is uncountable.

Thus, instead of stipulatively defining expectation as Leitgeb and Petti-
grew do, I will adopt the axiomatic approach of Whittle ð2000Þ. For random
variables X ; X1; X2; : : : , Whittle’s axioms state:

1. If X ðsÞ ≥ 0 for all s, then ExpðX Þ ≥ 0.
2. If c is a constant, then ExpðcX Þ5 cExpðX Þ.
3. ExpðX1 1 X2Þ5 ExpðX1Þ1 ExpðX2Þ.
4. For an event A, let 1A be the random variable with 1AðsÞ5 1 if A is true

in s and 1AðsÞ5 0 if A is false in s. Then Expð1AÞ5 PðAÞ.7
5. If for every s the sequence X1ðsÞ; X2ðsÞ; : : : is monotonically increas-

ing and converges to X ðsÞ, then the sequence ExpðX1Þ;ExpðX2Þ; : : : is
monotonically increasing and converges to ExpðX Þ.

Axiom 1 seems essential to the concept of an expected value. A random var-
iable cannot have a negative expected value unless it is at least possible for it
to take on a negative value. Axiom 4 gives the only direct connection be-
tween probability and expected value. Axioms 2, 3, and 5 provide linearity
conditions on expected value. Axiom 3 is often a surprise to students when
they learn that it holds regardless of whether X1 and X2 are independent or
dependent. However, once one has convinced oneself that it holds, it is
plausible that it is in fact essential to the notion of expected value and not
merely a mathematical consequence of a formal definition.

If V is a measurable random variable that always takes either the value v
or the value 0, then axioms 2 and 4 guarantee that ExpðV Þ5 vPðV 5 vÞ. If
V is a measurable random variable that takes on only finitely many pos-

6. Consider a case where S is infinite and every member of S has probability 0. For a

case where the two stipulations are different, let V be a random variable that takes on the
value 1 in every state. The first stipulation says ExpðV Þ5 0 ðbecause it is a sum of
terms that are all 0Þwhile the second saysExpðV Þ5 1. For a case where both are wrong,
let V 0 be a random variable that takes a different positive value in every state. Both stip-
ulations say ExpðV 0Þ5 0, even though it seems clear that its expected value should be
positive.

7. This is actually a combination of Whittle’s ð2000Þ axiom 4 on p. 15 and his definition
of probability on p. 17.
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sible values, then it is the sum of finitely many random variables of the pre-
vious sort, and thus, applying axiom 3, we see that ExpðV Þ5ovPðV 5 vÞ.

Figure 2.
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If V is a measurable random variable, and it is bounded ðthere are a
and b with a < V ðsÞ < b for all sÞ, then this previous result together with
axiom 5 will be sufficient to uniquely determine ExpðV Þ. This is because we
can define a sequence of random variables Vn that are monotonically in-
creasing and converge to V, each one of which is measurable and takes on
only finitely many possible values. In particular, we define kn 5 ðb2 aÞ=2n,
and we define VnðsÞ5 a1 ikn whenever a1 ikn ≤ V ðsÞ < a1 ði1 1Þkn.
ðSee fig. 2.Þ

The result of the previous paragraph suffices to define each ExpðVnÞ, and
axiom 5 guarantees that ExpðV Þ is the limit of these values. ðThis is in fact
equivalent to the standard measure-theoretic definition of the expected value
of a bounded measurable random variable as a Lebesgue integral.Þ

If we let fA be some available plan for updating one’s credence in A for
some experiment E, and if V ðsÞ is the inaccuracy IðA; s; fAðsÞÞ, then we can
see that V is measurable ðbecause E is measurable, so fA is measurable, and I
satisfies Extensionality and Monotonicity, so it is measurable as wellÞ and
bounded ðbecause I satisfies Bounded ContinuityÞ. Thus, Whittle’s axioms
for expectation suffice to define the expected inaccuracy of any plan of the
sort I consider.

Without Extensionality, inaccuracy might depend on some proposition for
which the agent does not have a credence, so it would not have an expectation.
Without Monotonicity and Bounded Continuity, inaccuracy could be un-
bounded in a way that results in its expected value being infinite or undefined.
Thus, some version of these first three assumptions is surely needed for ex-
pected inaccuracy to be the sort of thing one could try to minimize.

The use of expected inaccuracy distinguishes the arguments of Leitgeb and
Pettigrew, and that of Greaves and Wallace, from some other accuracy-based
arguments. For instance, Lindley ð1982Þ and Joyce ð1998Þ both give argu-
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ments for probabilism ðLindley argues for the ratio analysis of conditional
probability as wellÞ based merely on the requirement that no other credence
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function dominate the one under consideration ðone credence function “dom-
inates” another if and only if the first has lower inaccuracy in every stateÞ.
Since one credence function can have lower expected inaccuracy than an-
other without being dominated, the Joyce and Lindley results are correspond-
ingly stronger. All of these arguments, other than that of Greaves andWallace,
assume a strong connection between global and local accuracy.

My argument ðlike that of Leitgeb and PettigrewÞ makes the stronger as-
sumptions of each, that utility should be defined by a local inaccuracy mea-
sure and that agents should rule out all plans with higher expected inaccuracy
rather than merely plans that are dominated. If there is some problem in prin-
ciple with local inaccuracymeasures or expected inaccuracy, then this would
give a reason to reject my conclusions while accepting the conclusions of
some of the others. However, my arguments apply even when S is infinite,
and I give results leading to versions of conglomerability and reflection, in
addition to the ratio formula for conditional probability. ðAs an anonymous
referee has pointed out, the authors that give dominance arguments rather
than expectation arguments are trying to establish probabilism as well as
conditionalization. If probabilism is not already taken for granted, then the
use of expectation is clearly problematic. But once probabilism is granted,
as I have assumed here, the use of expectation rather than dominance may
not be a real weakness.Þ

2.6. The Theorems. The following results are proved in the appendix.

Ratio Theorem. If A is a measurable proposition, E is an experiment, E
is an element of E with positive probability, and fA has minimal expected
inaccuracy among the E-available plans for updating one’s credence in
A, then fAðsÞ5 PðA ∧ EÞ=PðEÞ for any s in E.

This theorem is the same as theorem 3 in Leitgeb and Pettigrew ð2010b, 250Þ,
except for my weaker assumptions on I and the measurability assumptions
needed for the infinite case. This is also the same as corollary 1 that Greaves
and Wallace state on page 625, except that they only assume Immodesty, while
I use a local inaccuracy measure and the measurability assumptions for infinite
sets.

Interval Theorem. If A is a measurable proposition, E is an experiment,
and fA has minimal expected inaccuracy among the E-available plans for
updating one’s credence in A, then there is no x with PðAÞ < x and x < fAðsÞ
for all s, and there is no x with PðAÞ > x and x > fAðsÞ for all s. That is,
infs∈S fAðsÞ ≤ PðAÞ ≤ sups∈S fAðsÞ.
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This theorem basically says that no optimal update plan guarantees an in-
crease in credence, or guarantees a decrease in credence. For every experi-
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ment that could increase one’s credence in A by some positive ε, there is al-
ways some other possible outcome of the experiment that would fail to do so.

In many cases, the content of this theorem can be better understood by
looking at a more specific consequence:

Expectation Theorem. If, for all propositions A in F , the conditions of
the Interval Theorem hold, and for each s, f: : :ðsÞ is a probability function
ðso that fAðsÞ ≥ 0 for all A, fSðsÞ5 1, and fA[BðsÞ5 fAðsÞ1 fBðsÞ whenever
A and B are disjointÞ, then for all A, PðAÞ5 Exp fAðsÞ½ �.

That is, the expected result of an update plan for A should equal one’s prior
credence in A.

All of these theorems tell us what plans that minimize expected inaccu-
racy must be like, if they exist. Fortunately, such plans do exist. ðThe space
of possible plans is the set of functions from E to ½0; 1�, which is compact,
by Tychonov’s theorem. Expected inaccuracy is a continuous function on
the space of plans and must therefore achieve its minimum value.Þ

The extra condition in the statement of the Expectation Theorem is a bit
subtle. In particular, since I have a separate plan for each proposition, I have
not assumed that the plans will combine to yield a coherent posterior prob-
ability function. And in fact, if E is a countable partition of propositions
whose credences fail to sum to 1, then it is known that the conclusion of the
Expectation Theorem must be violated, so there can be no set of plans that
cohere probabilistically ðHill and Lane 1985, 369Þ. However, if the uncondi-
tional credences satisfy countable additivity ðas orthodox Bayesianism as-
sumesÞ, then the Radon-Nikodym theorem of real analysis guarantees the ex-
istence of coherent update plans that satisfy the conclusions of all three
theorems. It remains to be seen if such plans must always minimize expected
inaccuracy, but it seems plausible that they will.

When E is finite, the Interval Theorem and Expectation Theorem are triv-
ial consequences of the Ratio Theorem. It is only in the infinite case that these
provide additional content. Thus, the normative claims about updating and
conditional credence that I discuss in the next section all apply to the finite
case as a consequence of the arguments by Leitgeb and Pettigrew or Greaves
andWallace. My contribution is to show that they hold in the infinite case as
well.

3. Normative Applications of the Theorems.

3.1. Accuracy Only? In much of the literature on accuracy, it is as-
sumed that accuracy is the only normatively significant feature of a credence
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function. Leitgeb and Pettigrew ð2010b, 244Þ defend this by arguing that
“the ultimate desideratum for a belief function is that it be close to the truth”
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and that any other virtue of a belief function can be sacrificed if it conflicts
with accuracy. In forthcoming work, Pettigrew suggests further that various
other desiderata, like being appropriately responsive to one’s evidence, may
also be derived from accuracy, so that these other values cannot conflict with
accuracy. Similarly, Joyce ð2009, 275Þ suggests ðat least tentativelyÞ that epi-
stemic value reflects considerations of accuracy alone, though he also suggests
it may be merely a “useful fiction” ð266Þ. ðGreaves andWallace skip accuracy
altogether and just talk about ‘epistemic utility’.Þ

I will follow these authors in assuming that the inaccuracymeasures include
everything that is relevant. If there are other normatively significant values that
could potentially overrule accuracy, then our results will all have to be inter-
preted quite differently ðEaswaran and Fitelson 2012Þ. But whatever support
their results give to probabilism and conditionalization, my results give the
same support to some additional norms for infinitary cases. The use of norms
based only on accuracy is what I will call “the accuracy framework.”As stated
in the introduction, the point of my argument is just to illustrate the power
of the accuracy framework in cases with infinitely many possibilities. It is a
further question whether this power is a strength or a weakness.

3.2. Synchronic Norms on Conditional Probability. First I will see what
my theorems tell us about the doxastic state of an agent at a time. I will start
by assuming the following synchronic norm on plans ðhere, and in every-
thing that follows, P will represent the agent’s current credences, before ac-
tually performing the experimentÞ:

Planning.An agent considering an update on the result of an experiment
E should plan to update in accordwith some E-available plan that minimizes
expected inaccuracy with respect to her current credence function.

This then gives us norms on plans from our theorems. From the Ratio Theo-
rem we get:

Plan Conditionalization. For any experiment E, and any E in E with
PðEÞ > 0, it ought to be the case that the agent plans, in case experiment
E gives outcome E, to update her credence in A to PðA ∧ EÞ=PðEÞ.

From the Interval Theorem we get:

Plan Reflection 1. For any experiment E, it ought to be the case that the
agent’s plans for future credence inA after updating on E span an interval that
includes PðAÞ.
This content downloaded  on Wed, 30 Jan 2013 13:41:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


From the Expectation Theorem we get:
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Plan Reflection 2. For any experiment E, it ought to be the case that the
expected future credence in A given the agent’s plan for updating on E
is exactly PðAÞ.

Of course, an agent’s plans for updating are not usually the sorts of things
we talk about in discussing the synchronic status of an agent’s credences.
However, one might think that these plans have a normative connection to
her current conditional credences. I propose:

CondProb. When considering a prospective experiment E, an agent’s
conditional credences should agree with her plan for updating on learning
the outcome of the experiment.

Of course, this norm is trivial if one thinks that conditional credences just
are one’s plans for updating. For reasons discussed in Hájek ð2003Þ and
Eriksson and Hájek ð2007Þ, I suspect that update plans and conditional cre-
dence probably are not actually the same state. However, it seems plausible
that there is a normative connection between the two.

Given both these norms, we can get the following additional conclusions.
The Ratio Theorem gives:

Ratio Analysis. If PðEÞ > 0, then PðAjEÞ should be PðA ∧ EÞ=PðEÞ:

The Interval Theorem gives:

Conglomerability. For any proposition A and any experiment E, PðAÞ
should be within the range spanned by the PðAjEiÞ, for Ei in E.

The Expectation Theorem gives:

Disintegrability: For any proposition A and any experiment E, PðAÞ
should equal Exp½PðAjEiÞ�.

Ratio Analysis is of course the standard account of conditional probability,
and the other two are the principles known by those names in the literature
ðDubins 1975Þ. Philosophers and statisticians have given various arguments
against Conglomerability and Disintegrability ðHill 1980; Hill and Lane
1985; Kadane et al. 1986; Arntzenius et al. 2004Þ. If these challenges are
taken to be decisive, then this raises problems for the accuracy framework.
Defenders of the accuracy framework will have to use some of the defenses
suggested by Easwaran ð2008Þ or suggested by Dickey, Fraser, or Lindley in
their responses included in Hill ð1980Þ.
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3.3. DiachronicNorms onUpdates. Leitgeb and Pettigrew, andGreaves
and Wallace, claim to get more than just synchronic norms on credences.
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They both claim that over the course of an update, an agent should obey
the following norm:

Conditionalization.After learning a proposition B, an agent’s new credence
in A ought to be PðA ∧ BÞ=PðBÞ.

A natural diachronic norm that gives Conditionalization as a consequence
of the Ratio Theorem would be:

Updating. A rational agent always updates her credences in response to
performing experiment E in accord with some plan that minimizes prior
expected inaccuracy.

In light of my Interval Theorem and Expectation Theorem, we see that any up-
date satisfying my conditions should also satisfy:

General Reflection 1. For any experiment E, a rational agent’s current
credence in A ought to lie in the range spanned by her possible future
credences in A after updating on E.

General Reflection 2. For any experiment E, a rational agent’s current

credence in A ought to be equal to her expected future credence in A after
updating on E.

Principles like this were discussed and attacked by van Fraassen ð1984Þ, and
many other counterexamples have been proposed since then. But to the ex-
tent that these counterexamples involve updates that violate the assumptions
I made in section 2.2, they are not challenges to my normative claims. Any
counterexamples that involve only finite partitions are just asmuch challenges
to Conditionalization as to the various reflection principles.

But regardless of the status of the counterexamples, I am somewhat
suspicious of any such diachronic norm. As Michael Titelbaum pointed out
in comments on Greaves’s presentation of Greaves and Wallace ð2006Þ at
the 2006 Pacific meeting of the American Philosophical Association, if an
agent just arbitrarily updates in a way that violates her prior plan, and we use
the agent’s new credence function to calculate the expected accuracy rather
than the old function, then Immodesty guarantees that any update to a prob-
abilistically coherent set of credences will end up minimizing expected in-
accuracy. ðTitelbaum recommended instead a synchronic interpretation of
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the significance of their theorem, like what I considered in sec. 3.2.Þ Thus, to
get this conclusion, we need a real diachronic norm on credences.
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Giving a diachronic norm on credence is a notoriously difficult problem.
Despite the fact that a variety of arguments formally reach diachronic con-
clusions, Christensen ð1991, 246Þ argues that “without some independent
reason for thinking that an agent’s present beliefs must cohere with her fu-
ture beliefs,” there can be no more support for a diachronic norm ðlike con-
ditionalizationÞ than for an interpersonal norm ðe.g., the requirement that one’s
credences must match those of one’s spouseÞ.

Arguments based on decision theory and expected values are no better at
providing reasons for intertemporal coherence. Various authors have tried
to give arguments that the very fact that an agent has made a plan gives her a
reason to stick with it when the appropriate time comes ðMcClennen 1990;
Gauthier 1994; Hinchman 2003Þ. However, there are some decision situa-
tions that are apparent counterexamples, where it seems an agent could do
better by abandoning her plans ðKavka 1983Þ.

Thus, van Fraassen ð1995Þ moved from attacking General Reflection to
defending principles more like Plan Reflection, saying that it is only one’s
synchronic commitments that are susceptible to these normative require-
ments, rather than one’s actual diachronic updates.

Another perspective on reflection principles is provided by Skyrms ð1990Þ,
who suggests that they should be taken as a way to classify certain updates as
instances of “learning,” even though they do not hold for all updates. ðSee the
discussion on pages 97 and 99 of Skyrms ½1990� of “Condition M,” which is
equivalent to General Reflection 2.Þ It is interesting that Myrvold ð2012Þ has
shown that, for an accuracy measure that satisfies Immodesty, any update
that satisfies Condition M must decrease expected inaccuracy. My results can
be seen as a sort of converse—an update that satisfiesmy conditions andmin-
imizes expected inaccuracy must satisfy Condition M. The main difference
is that they use Condition M to characterize the updates in question, while I
show that it holds for updates that satisfy the conditions given in section 2.2.

3.4. Upshot. Thus, using the accuracy framework, we get some support
for diachronic reflection principles and synchronic principles of Conglomer-
ability and Disintegrability, in addition to the support for conditionalization
given by Greaves and Wallace, and Leitgeb and Pettigrew. Although there are
worries about the diachronic norms, the synchronic norms already provide
interesting constraints on conditional probability, which may still be of use
in understanding diachronic updates. I have shown that these results hold
even without the idealizing assumption that all partitions are finite ðin which
case all the results follow from Ratio Analysis and ConditionalizationÞ.
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Appendix
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Theorems

Ratio Theorem. If A is a measurable proposition, E is an experiment,
E is an element of E with positive probability, and fA has minimal expected
inaccuracy among the E-available plans for updating one’s credence in A,
then fAðsÞ5 PðA ∧ EÞ=PðEÞ for any s in E.

Proof. Let f 0 be a function that agrees with fA everywhere outside E,
while f 0ðsÞ5 PðA ∧ EÞ=PðEÞ for all s in E. Note that f 0 is also an avail-
able plan—it is still constant on all elements of E ðsince fA wasÞ, and since
it differs from fA on only a single measurable set, we can see that the set
of s with f 0ðsÞ > x is still measurable, since it is either the set of s with
fAðsÞ > x, or the union of this set with E, or the intersection of this set with
the complement of E. To prove the theorem, I will show that if fA ≠ f 0,
then the expected inaccuracy of f 0 is less than the expected inaccuracy of
f. Thus, if fA is an available plan that minimizes expected inaccuracy, then
it must equal f 0, as required.

Now let V ðsÞ5 IðA; s; fAðsÞÞ and V 0ðsÞ5 IðA; s; f 0ðsÞÞ. By the linearity
of expectation, we see that ExpðV Þ5 ExpðV � 1EÞ1 ExpðV � 1:EÞ, where
1E is the variable that takes values 1 when E is true and 0 otherwise, and
1:E is the opposite. Similarly, ExpðV 0Þ5 ExpðV 0 � 1EÞ1 ExpðV 0 � 1:EÞ. Be-
cause V and V 0 are identical on :E, we see that V � 1:E 5 V 0 � 1:E. Thus,
ExpðV 0Þ ≤ ExpðV Þ ðwhich is what we need to showÞ if and only if ExpðV 0 �
1EÞ ≤ ExpðV � 1EÞ.

Now let x be the value that fA takes on E, and let x 0 5 PðA ∧ EÞ=PðEÞ
be the value that f 0 takes on E. Now, on E, V ðsÞ5 IðA; s; xÞ and V 0ðsÞ5
IðA; s; x 0Þ. By linearity again, ExpðV � 1EÞ5 ExpðV � 1E � 1AÞ1 ExpðV � 1E

� 1:AÞ, and ExpðV 0 � 1EÞ5 ExpðV 0 � 1E � 1AÞ1 ExpðV 0 � 1E � 1:AÞ. But for any
s in E ∧ A, Extensionality gives us V ðsÞ5 IðA; 1; xÞ and V 0ðsÞ5 IðA; 1;
x 0Þ, and, similarly, for any s in E ∧ :A, V ðsÞ5 IðA; 0; xÞ and V 0ðsÞ5
IðA; 0; x 0Þ. Thus, since V and V 0 are constant on these sets, axioms 2 and 4
of expectation give us that

ExpðV � 1E � 1AÞ5 PðE ∧ AÞIðA; 1; xÞ;

ExpðV � 1E � 1:AÞ5 PðE ∧ :AÞIðA; 0; xÞ;

ExpðV 0 � 1E � 1AÞ5 PðE ∧ AÞIðA; 1; x 0Þ;

ExpðV 0 � 1E � 1:AÞ5 PðE ∧ :AÞIðA; 0; x 0Þ:
This content downloaded  on Wed, 30 Jan 2013 13:41:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Since PðE ∧ AÞ5 x 0PðEÞ and PðE ∧ :AÞ5 ð12 x 0ÞPðEÞ ðthe former by
definition, and the latter because P is a probability functionÞ, we have:
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ExpðV � 1EÞ5 x 0PðEÞIðA; 1; xÞ1 ð12 x 0ÞPðEÞIðA; 0; xÞ;

ExpðV 0 � 1EÞ5 x0PðEÞIðA; 1; x 0Þ1 ð12 x 0ÞPðEÞIðA; 0; x 0Þ:
Dividing through by PðEÞ ðwhich is positive, by assumptionÞ, we see that
Immodesty then says ExpðV 0 � 1EÞ ≤ ExpðV � 1EÞ, so ExpðV 0Þ ≤ ExpðV Þ, with
equality holding if and only if x5 x 0. Thus, if V has minimal expectation,
so that fA has minimal expected inaccuracy, then x5 x0 and fA 5 f 0. QED

Interval Theorem. If A is a measurable proposition, E is an experiment,
and fA has minimal expected inaccuracy among the E-available plans for
updating one’s credence in A, then there is no x with PðAÞ < x and x < fAðsÞ
for all s, and there is no x with PðAÞ > x and x > fAðsÞ for all s. That is,
infs∈S fAðsÞ ≤ PðAÞ ≤ sups∈S fAðsÞ.

Proof. This proof comes in two parts. First I will show that this is true
when E is a finite partition, and then I will use this fact to show that it is
true in general.

When E is finite, we can write it as fE1; : : : ;Eng. Since fA is constant on
each Ei, I will slightly abuse the notation and write fAðEiÞ rather than fAðsÞ
for s in Ei. By the previous result, if PðEiÞ > 0, then fAðEiÞ5 PðA ∧ EiÞ
=PðEiÞ, so PðA ∧ EiÞ5 fAðEiÞPðEiÞ. Because P is a probability function, if
PðEiÞ5 0, then PðA ∧ EiÞ5 05 fAðEiÞPðEiÞ. Thus, in any case, we have
PðA ∧ EiÞ5 fAðEiÞPðEiÞ. Since P is a probability function and E is a finite
partition, we see that PðAÞ5 PðA ∧ E1Þ1 : : :1 PðA ∧ EnÞ5 fAðE1ÞPðE1Þ
1 : : :1 fAðEnÞPðEnÞ. Since the PðEiÞ add up to 1, we see that PðAÞ is a
weighted average of the fAðEiÞ, and thus at least one of them must be no
larger than PðAÞ, and at least one of them must be no smaller than PðAÞ,
which entails what we want to prove. So this theorem ðas well as the Ex-
pectation TheoremÞ is proved when E is finite.

One observation that will be useful—the proof establishes in fact that
there are Ei and Ei 0 with fAðEiÞ ≤ PðAÞ ≤ fAðEi 0 Þ, where PðEiÞ and PðEi 0 Þ are
both positive.

I will define Iðc; xÞ5 cIðA; 1; xÞ1 ð12 cÞIðA; 0; xÞ to be the expected
inaccuracy of having credence x in A, when evaluated by an agent whose
credence in A is c. ðConveniently, although I have earlier used Ið1; xÞ as an
abbreviation for IðA; 1; xÞ and Ið0; xÞ as an abbreviation for IðA; 0; xÞ,
this definition agrees with those abbreviations when c5 1 or c5 0.Þ Im-
modesty is the claim that Iðc; cÞ ≤ Iðc; xÞ, with equality holding if and only
if x5 c.
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I will also defineDðc; xÞ5 Iðc; xÞ2 Iðc; cÞ, which is the amount that the
expected inaccuracy of credence x exceeds the expected inaccuracy of c it-

138 KENNY EASWARAN
self, again when evaluated by an agent whose credence in A is c.
I will start the proof for the infinite case by using Convexity ðtogether with

implicit appeal to Monotonicity and ImmodestyÞ to prove two lemmas:

Lemma 1. If c < x < x 0, then Dðc; xÞ < Dðc; x 0Þ.

Proof. Let l5 ðx2 cÞ=ðx 0 2 cÞmeasure the proportion to which x is
between c and x 0, so that x5 lx 0 1 ð12 lÞc. By Convexity, we know
that Ið1; xÞ2 Ið1; cÞ < l½Ið1; x 0Þ2 Ið1; cÞ� and that Ið0; xÞ 2 Ið0; cÞ
< l½Ið0; x 0Þ2 Ið0; cÞ�. Multiplying the first inequality by c and the sec-
ond by ð12 cÞ, and adding them together, tells us that

c½Ið1; xÞ2 Ið1; cÞ�1 ð12 cÞ½Ið0; xÞ2 Ið0; cÞ�
< l c½Ið1; x 0Þ2 Ið1; cÞ�1 ð12 cÞ½Ið0; x 0Þ2 Ið0; cÞ�f g:

By substituting definitions, this means that

Dðc; xÞ < lDðc; x 0Þ:
Since all of these are positive numbers, and 0 < l < 1, we see that Dðc; xÞ
< Dðc; x 0Þ. QED

Lemma 2. If c 0 < c < x, then Dðc; xÞ < Dðc0; xÞ.

Proof. Let l5 ðx2 cÞ=ðx2 c0Þ measure the proportion to which c is
between x and c0, so that c5 lc0 1 ð12 lÞx. By Convexity, we know that
Ið1; xÞ2 Ið1; cÞ < l½Ið1; xÞ2 Ið1; c0Þ�, with both sides negative. Thus, if
we multiply the first by a larger positive number than the second, then we
preserve the inequality, so we see that c½Ið1; xÞ2 Ið1; cÞ� < lc0½Ið1; xÞ2
Ið1; c0Þ�. By Convexity, we know that Ið0; xÞ2 Ið0; cÞ < l½Ið0; xÞ2
Ið0; c0Þ�, with both sides positive. Thus, if we multiply the first by a smaller
positive number than the second, then we preserve the inequality, so we see
that ð12 cÞ½Ið0; xÞ2 Ið0; cÞ� < lð12 c0Þ½Ið0; xÞ2 Ið0; c0Þ�. Adding these
two resulting inequalities together tells us that

c½Ið1; xÞ2 Ið1; cÞ�1 ð12 cÞ½Ið0; xÞ2 Ið0; cÞ�
< l c0½Ið1; xÞ2 Ið1; c0Þ�1 ð12 c0Þ½Ið0; xÞ2 Ið0; c0Þ�f g:

By substituting definitions, this means that

Dðc; xÞ < lDðc0; xÞ:
Since all of these are positive numbers, and 0 < l < 1, we see that Dðc; xÞ
< ðc0; xÞ. QED
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I will now return to the proof when E is infinite. This part of the proof
will proceed by contradiction. Figure A1 will help keep track of the relevant

Figure A1.
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values that are introduced.
So assume that there is x > PðAÞ such that fAðsÞ > x for all s. ðThe dual

case with x < PðAÞ such that fAðsÞ < x for all s works similarly.Þ Let c5
PðAÞ. Let ε5 Dðc; xÞ. By Immodesty, ε is positive.

By Bounded Continuity, there are finitely many values 05 x0 < x1 < : : :
< xn 5 1 such that IðA; 0; xi11Þ2 IðA; 0; xiÞ < ε and IðA; 1; xiÞ2 IðA; 1;
xi11Þ < ε. Let Ui be the set of s such that xi ≤ fAðsÞ < xi11. ðBy refine-
ment of the partition if necessary, we can ensure that any nonempty Ui will
have x < xi, since x < fAðsÞ for all s.Þ Because fA is constant on each ele-
ment of E, each Ui must be a union of members of E. If U is the par-
tition into the Ui, then this means that U is a coarsening of the partition E.

Let fU be aU-available plan with minimal expected inaccuracy. Since U
is a finite partition, the finite part of this proof establishes that there is an s
with fUðsÞ ≤ c5 PðAÞ. Let Ui be the element of U containing s, and let
c 0 5 fUðsÞ, so that c 0 ≤ c < x < xi ≤ fAðsÞ for all s in Ui . By the observation
made after proving the finite version, we can ensure that PðUi Þ > 0. Thus,
by the Ratio Analysis result, we see that c 0 5 PðA ∧ Ui Þ=PðUi Þ. Let f 0

U be
the function that agrees with fA outside of Ui and agrees with fU inside Ui .

Now consider the set Fi of all E-available functions that agree with fA
outside Ui. Note that fA and f 0

U are both in Fi. ðThe term fA is not U-
available, but it is E-available.Þ I will also consider the function fi , which
agrees with fA outside of Ui and takes on the value xi for all s in Ui . By
linearity of expectations,

Exp½IðA; s; f ðsÞÞ�5 Exp½IðA; s; f ðsÞÞ � 1Ui
�1 Exp½IðA; s; f ðsÞÞ � 1:Ui

�:

Because all of these functions are identical for s in :Ui , their total expected
inaccuracy will depend only on Exp½IðA; s; f ðsÞÞ � 1Ui

�.
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Because f 0
UðsÞ5 c0 and fiðsÞ5 xi for all s in Ui , we can see that
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Exp½IðA; s; f 0
UðsÞÞ � 1Ui

�5 PðUi ∧ AÞIðA; 1; c0Þ1 PðUi ∧ :AÞIðA; 0; c0Þ

and

Exp½IðA; s; fiðsÞÞ � 1Ui
�5 PðUi ∧ AÞIðA; 1; xiÞ1 PðUi ∧ :AÞIðA; 0; xiÞ:

But we observed earlier that PðUi ∧ AÞ=PðUi Þ5 c0, and thus since P is a
probability function, PðUi ∧ :AÞ=PðUi Þ5 ð12 c0Þ, so we have

Exp½IðA; s; f 0
UðsÞÞ � 1Ui

�
PðUi Þ 5 c0IðA; 1; c0Þ1 ð12 c0ÞIðA; 0; c0Þ5 Iðc0; c0Þ

and

Exp½IðA; s; fiðsÞÞ � 1Ui
�

PðUi Þ 5 c0IðA; 1; xiÞ1 ð12 c0ÞIðA; 0; xiÞ5 Iðc0; xiÞ:

Since c 0 ≤ c < x < xi, our two lemmas together tell us that Iðc 0; xiÞ2 Iðc 0; c 0Þ
5 Dðc 0; xiÞ > Dðc; xÞ5 ε. Thus, the expected inaccuracy of fi is at least
εPðUiÞ greater than the expected inaccuracy of f 0

U .
But for any s in Ui , the inaccuracy of fA on s is within ε of the inac-

curacy of fi on s ðbecause fA is always between xi and xi11, which are cho-
sen to make sure that regardless of whether A is true or false, the inaccuracy
of any value in this range is within ε of the inaccuracy of any other value in
this range—this is the one use of MonotonicityÞ. Thus, the expected inaccu-
racy of fA is within εPðUiÞ of the expected inaccuracy of fi , which means
that the expected inaccuracy of fA must be greater than the expected inaccu-
racy of fU .

Thus, since fA and f 0
U agree outside of Ui , we see that the expected in-

accuracy of fA is greater than the expected inaccuracy of f 0
U , which contra-

dicts the assumption that fA had minimal expected inaccuracy of any E-
available plan. Thus, the original assumption that there is x with PðAÞ < x
and fAðsÞ > x for all s must be false, which proves one direction of the in-
equality. The other direction is proven by the corresponding argument with
all inequalities reversed. QED

Remark: if f 0
A differs from fA only on a set of probability 0, then the ex-

pected inaccuracy of both plans is the same, so that one has minimal expected
inaccuracy if and only if the other does.Therefore,as a corollary,we have that
for any x > PðAÞ, the set of s with fAðsÞ ≤ x must have nonzero probability—
otherwise we could find an f 0

A that also has minimal expected inaccuracy but
violates the conclusion of the theorem.
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Expectation Theorem. If for all propositions A in F the conditions of the
Interval Theorem hold, and for each s, f : : : ðsÞ is a probability function
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ðso that fAðsÞ ≥ 0 for all A, fSðsÞ5 1, and fA[BðsÞ5 fAðsÞ1 fBðsÞ when-
ever A and B are disjointÞ, then for all A, PðAÞ5 Exp fAðsÞ½ �.

Proof. This is a straightforward consequence of the Interval Theorem to-
gether with theorem 1 of Dubins ð1975Þ, which states that an expectation is
conglomerable if and only if it is disintegrable. The Interval Theorem shows
that the expectation here is conglomerable, and the conclusion of this theorem
is the claim that the expectation is disintegrable. QED
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